23 research outputs found

    Cepheid Calibration of the Peak Brightness of SNe Ia. X. SN 1991T in NGC 4527

    Get PDF
    Repeated imaging observations have been made of NGC 4527 with the Hubble Space Telescope between April and June 1999, over an interval of 69 days. Images were obtained on 12 epochs in the F555W band and on five epochs in the F814W band. The galaxy hosted the type Ia supernova SN1991T, which showed relatively unusual behavior by having both an abnormal spectrum near light maximum, and a slower declining light curve than the proto-typical Branch normal SNe Ia. A total of 86 variables that are putative Cepheids have been found, with periods ranging from 7.4 days to over 70 days. From photometry with the DoPHOT program, the de-reddened distance modulus is determined to be (m-M)_0 = 30.67 +/- 0.12 (internal uncertainty) using a subset of the Cepheid data whose reddening and error parameters are secure. A parallel analysis of the Cepheids using photometry with ROMAFOT yields (m -M)_0 =30.82 +/- 0.11. The final adopted modulus is (m -M)_0 =30.74 +/- 0.12 +/- 0.12 (d=14.1 +/- 0.8 +/- 0.8 Mpc). The photometric data for SN1991T are used in combination with the Cepheid distance to NGC 4527 to obtain the absolute magnitude for this supernova of M_V^0(max) = -19.85 +/- 0.29. The relatively large uncertainty is a result of the range in estimates of the reddening to the supernova. Thus SN1991T is seen to be only moderately brighter (by ~ 0.3 mag) than the mean for spectroscopically normal supernovae, although magnitude differences of up to 0.6 mag cannot be ruled out.Comment: 46 pages, LATEX using aaspp4.sty, including 9 embedded tables, 19 figures (gif and jpg files), a full-resolution version (ps files) is available at http://www.astro.unibas.ch/forschung/ll/cepheid.shtml, accepted for publication in the Astrophysical Journa

    Diversity of Decline-Rate-Corrected Type Ia Supernova Rise Times: One Mode or Two?

    Get PDF
    B-band light-curve rise times for eight unusually well-observed nearby Type Ia supernovae (SNe) are fitted by a newly developed template-building algorithm, using light-curve functions that are smooth, flexible, and free of potential bias from externally derived templates and other prior assumptions. From the available literature, photometric BVRI data collected over many months, including the earliest points, are reconciled, combined, and fitted to a unique time of explosion for each SN. On average, after they are corrected for light-curve decline rate, three SNe rise in 18.81 +- 0.36 days, while five SNe rise in 16.64 +- 0.21 days. If all eight SNe are sampled from a single parent population (a hypothesis not favored by statistical tests), the rms intrinsic scatter of the decline-rate-corrected SN rise time is 0.96 +0.52 -0.25 days -- a first measurement of this dispersion. The corresponding global mean rise time is 17.44 +- 0.39 days, where the uncertainty is dominated by intrinsic variance. This value is ~2 days shorter than two published averages that nominally are twice as precise, though also based on small samples. When comparing high-z to low-z SN luminosities for determining cosmological parameters, bias can be introduced by use of a light-curve template with an unrealistic rise time. If the period over which light curves are sampled depends on z in a manner typical of current search and measurement strategies, a two-day discrepancy in template rise time can bias the luminosity comparison by ~0.03 magnitudes.Comment: As accepted by The Astrophysical Journal; 15 pages, 6 figures, 2 tables. Explanatory material rearranged and enhanced; Fig. 4 reformatte

    `Pure' Supernovae and Accelerated Expansion of the Universe

    Full text link
    A special class of type Ia supernovae that is not subject to ordinary and additional intragalactic gray absorption and chemical evolution has been identified. Analysis of the Hubble diagrams constructed for these supernovae confirms the accelerated expansion of the Universe irrespective of the chemical evolution and possible gray absorption in galaxies.Comment: 2 figures, 1 tabl

    Type Ia Supernovae: Influence of the Initial Composition on the Nucleosynthesis, Light Curves, Spectra and Consequences for the Determination of Omega_M & Lambda

    Full text link
    The influence of the initial composition of the exploding white dwarf on the nucleosynthesis, light curves and spectra of Type Ia supernovae has been studied in order to evaluate the size of evolutionary effects on cosmological time scales, how the effects can be recognized and how one may be able to correct for them. The calculations are based on a set of delayed detonation models which give a good account of the optical and infrared light curves and of the spectral evolution. The explosions and light curves are calculated using a one- dimensional Lagrangian radiation-hydro code including a nuclear network. NLTE- spectra are computed for various epochs using the structure resulting from the light curve code. The following questions are addressed : What do we learn about the progenitor evolution and its metallicity? What are the systematic effects for the determination of the cosmological parameters ΩM\Omega_M and Λ\Lambda and how can we recognize this potential 'pitfalls' and correct for evolutionary effects?Comment: 19 pages, TeX, Ap

    The SN 1006 Remnant: Optical Proper Motions, Deep Imaging, Distance, and Brightness at Maximum

    Get PDF
    We report the first measurement of proper motions in the SN1006 remnant (G327.6+14.6) based entirely on digital images. CCD images from three epochs spanning a period of 11 years are used: 1987 from Las Campanas, and 1991 and 1998 from CTIO. Measuring the shift of delicate Balmer filaments along the northwest rim of the remnant, we obtain proper motions of 280 +/- 8 mas/yr along the entire length where the filaments are well defined, with little systematic variation along the filaments. We also report very deep Halpha imaging observations of the entire remnant that clearly show very faint emission surrounding almost the entire shell, as well as some diffuse emission regions in the (projected) interior. Combining the proper motion measurement with a recent measurement of the shock velocity based on spectra of the same filaments by Ghavamian et al. leads to a distance of 2.17 +/- 0.08 kpc to SN1006. Several lines of argument suggest that SN1006 was a Type Ia event, so the improved distance measurement can be combined with the peak luminosity for SNeIa, as determined for events in galaxies with Cepheid-based distances, to calculate the apparent brightness of the spectacular event that drew wide attention in the eleventh century. The result, V_max = -7.5 =/- 0.4, lies squarely in the middle of the wide range of estimates based on the historical observations.Comment: 13 pages, 3 tables, 5 figures. Uses AASTeX5.02 and emulateapj

    The Rise Time of Type Ia Supernovae from the Supernova Legacy Survey

    Get PDF
    We compare the rise times of nearby and distant Type Ia supernovae (SNe Ia) as a test for evolution using 73 high-redshift spectroscopically-confirmed SNe Ia from the first two years of the five year Supernova Legacy Survey (SNLS) and published observations of nearby SN. Because of the ``rolling'' search nature of the SNLS, our measurement is approximately 6 times more precise than previous studies, allowing for a more sensitive test of evolution between nearby and distant supernovae. Adopting a simple t2t^2 early-time model (as in previous studies), we find that the rest-frame BB rise times for a fiducial SN Ia at high and low redshift are consistent, with values 19.100.17+0.18(stat)±0.2(syst)19.10^{+0.18}_{-0.17}({stat}) \pm 0.2 ({syst}) and 19.580.19+0.2219.58^{+0.22}_{-0.19} days, respectively; the statistical significance of this difference is only 1.4 \sg . The errors represent the uncertainty in the mean rather than any variation between individual SN. We also compare subsets of our high-redshift data set based on decline rate, host galaxy star formation rate, and redshift, finding no substantive evidence for any subsample dependence.Comment: Accepted for publication in AJ; minor changes (spelling and grammatical) to conform with published versio

    Thermonuclear Burning Regimes and the Use of SNe Ia in Cosmology

    Full text link
    The calculations of the light curves of thermonuclear supernovae are carried out by a method of multi-group radiation hydrodynamics. The effects of spectral lines and expansion opacity are taken into account. The predictions for UBVI fluxes are given. The values of rise time for B and V bands found in our calculations are in good agreement with the observed values. We explain why our results for the rise time have more solid physical justification than those obtained by other authors. It is shown that small variations in the chemical composition of the ejecta, produced in the explosions with different regimes of nuclear burning, can influence drastically the light curve decline in the B band and, to a lesser extent, in the V band. We argue that recent results on positive cosmological constant Lambda, found from the high redshift supernova observations, could be wrong in the case of possible variations of the preferred mode of nuclear burning in the earlier Universe.Comment: 20 pages, 5 figures, presented at the conference "Astronomy at the Eve of the New Century", Puschino, May 17-22, 1999. A few references and a table added, typos correcte

    Optical Light Curves of the Type Ia Supernovae 1990N and 1991T

    Full text link
    We present UBVRI light curves for the bright Type Ia supernovae SN 1990N in NGC 4639 and SN 1991T in NGC 4527 based on photometry gathered in the course of the Calan/Tololo supernova program. Both objects have well-sampled light curves starting several days before maximum light and spanning well through the exponential tail. These data supercede the preliminary photometry published by Leibundgut et al (1991) and Phillips et al (1992). The host galaxies for these supernovae have (or will have) accurate distances based on the Cepheid period-luminosity relationship. The photometric data in this paper provide template curves for the study of general population of Type Ia supernova and accurate photometric indices needed for the Cepheid-supernova distance scale.Comment: AAS LaTeX, 30 pages, 10 figures, to appear in the Jan 1998 Astronomical Journal. Figs 1 and 2 (finding charts) not include

    The estimation of black-hole masses in distant radio galaxies

    Full text link
    We have estimated the masses of the central supermassive black holes of 2442 radio galaxies froma catalog compiled using data from the NED, SDSS, and CATS databases. Mass estimates based on optical photometry and radio data are compared. Relationships between the mass of the central black hole MpbhM_p^{bh} and the redshift zpz_p are constructed for both wavelength ranges. The distribution of the galaxies in these diagrams and systematic effects influencing estimation of the black-hole parameters are discussed. Upperenvelope cubic regression fits are obtained using the maximum estimates of the black-hole masses. The optical and radio upper envelopes show similar behavior, and have very similar peaks in position, zp1.9z_p \simeq 1.9, and amplitude, logMpbh\log M_p^{bh} = 9.4. This is consistent with a model in which the growth of the supermassive black holes is self-regulating, with this redshift corresponding to the epoch when the accretion-flow phase begins to end and the nuclear activity falls off.Comment: 8 pages, 6 figure

    Hubble Space Telescope Spectroscopy of V471 Tauri: Oversized K Star, Paradoxical White Dwarf

    Get PDF
    We have used the GHRS onboard the HST to obtain Lyman-alpha spectra of the hot white-dwarf (WD) component of the short-period eclipsing DA+dK2 pre-cataclysmic binary V471 Tauri, a member of the Hyades star cluster. Radial velocities of the WD, combined with ground-based measurements of the dK velocities, eclipse timings, and a determination of the dK star's rotational velocity, yield dynamical masses for the components of M(WD)=0.84 and M(dK)=0.93 Msun. Model-atmosphere fitting of the Ly-alpha profile provides the effective temperature (34,500 K) and surface gravity (log g=8.3) of the WD. The radius of the dK component is 18% larger than that of a normal Hyades dwarf of the same mass. This expansion is attributed to the extensive coverage of the surface by starspots, causing the star to expand in response. The WD radius, determined from a radiometric analysis and from eclipse ingress timings, is 0.0107 Rsun. The position of the star in the M-R plane is in full accord with theory for a degenerate CO WD. The high temperature and mass of the WD present an evolutionary paradox: the WD is the most massive known in the Hyades, but also the hottest and youngest. We suggest that the explanation is that the WD is indeed very young, and is descended from a triple consisting of a blue straggler and a more-distant dK companion. We estimate that the common-envelope efficiency parameter, alpha_CE, was of order 0.3-1.0, in good agreement with recent hydrodynamical simulations.Comment: Astrophysical Journal, in press. 34 text pages, 8 figure
    corecore